Thermal Analysis Labs

Calorimetry

Determining heats of mixing of molten salts with reaction calorimetry

In recent years, molten salts have become the focus of increasing research in nuclear and solar power applications as high temperature heat transfer fluids. Molten salts have unique advantages over other high temperature heat-transfer fluids, such as supercritical water: Lower vapor pressure decreases the risks associated with high pressure fluid, and fuels may be dissolved in the salt to create a system with built-in natural feedback loops that prevent thermal runaway of reactor cores – creating “inherently safe” reactor systems. In solar power systems, molten salts possess improved safety associated with a lack of hydrogen production and lower operating pressures as compared with supercritical water.

Figure 1. Specialized cells for measuring heats of mixing.

In the design of molten salt systems for different applications, it is important to thoroughly understand the chemistry of the system – including the heat of mixing to manage the heat from the initial production of the molten salt system. Specialty cells (Figure 1) can be used to conduct these measurements and enable better thermal understanding of these systems. In the cells, the two components are physically separated to the desired temperature, then heated past the melting point of both salts. The Ni separator is then removed, allowing the heat of melting to be observed.

Figure 2. Simulated and measured heats of mixing for a LiF4-ThF4 binary molten salt system.
Figure 3. SETARAM Multi HTC High temperature heat flux 3D DSC and drop calorimeter.

An example of the kind of data often generated from this system is seen in Figure 2. This data set, taken from a paper published by Dr. Ondrej Benes and his team at the Joint Research Center, shows the heats of mixing for a binary molten salt system.[1] The data was observed with a combination of drop calorimetry and 3D DSC techniques, measured using a SETARAM Multi HTC (Figure 3). The data serves to validate simulations of the expected heats of mixing of these systems and lend confidence to the thermal models that can be used to validate the principle and performance of intrinsically safe molten salt reactor systems.

Figure 4. Drop sensor and automatic sample charger for the drop calorimetry configuration of the Multi HTC high temperature calorimeter.

The SETARAM Multi HTC high temperature heat-flux calorimeter is the ideal system for measuring heat capacity and heat of mixing on high temperature molten salt systems: Its drop calorimetry mode enables unparalleled sensitivity in heat capacity measurement with a Calvet-style 3D DSC differential heat flow sensor that totally envelops the measurement chamber (Figure 4). For unparalleled precision in sample insertion, an automatic sample charger is available for the system. The reference chamber is located below the drop chamber to enable total thermal isolation and prevent interactions between the two chambers.

Figure 5. Measurement chamber of the 3D Heat flux DSC mode of the Multi HTC.

In heat flux 3D DSC mode of the Multi HTC, two ceramic chambers contain reference and sample crucibles (Figure 5). The differential heat flux DSC sensor uses 20 thermocouples that totally envelop the sample and reference chambers – enabling detection of over 90% of the available heat flow signal by conduction, convection, and radiation heat flow modes. This enables higher accuracy and sensitivity than the standard plate style DSC sensors which are only able to detect conduction into the heat flow sensor.


[1] E.Capelli, O.Beneš, M.Beilmann, R.J.M.Konings. The Journal of Chemical Thermodynamics. 2013. 58. 110-116. DOI: 10.1016/j.jct.2012.10.013

Simultaneous Thermal Analysis and Evolved Gas Analysis (STA-EGA) for Molten Salt Applications


Molten salts are increasingly applied in solar power generation and nuclear power heat management applications. In both applications, they are employed as high temperature heat-transfer fluids to enable powering of heat engines or steam turbines. Molten salts have unique advantages over other high temperature heat-transfer fluids, such as supercritical water: Lower vapor pressure decreases the risks associated with high pressure fluid, and fuels may be dissolved in the salt to create a system with built-in natural feedback loops that prevent thermal runaway of reactor cores – creating “inherently safe” reactor systems. In solar power systems, molten salts possess improved safety associated with a lack of hydrogen production and lower operating pressures as compared with supercritical water.

Figure 1. TG/DSC-MS analysis of thermal stability of a ternary Nitrate/Nitrite molten salt system in an oxygen atmosphere.

To evaluate the utility of molten salts for these applications, a good understanding of the thermal stability of the materials is needed. However, this can be challenging due to the corrosive nature of many of these materials. Rene Olivares from CSIRO in Australia illustrates full characterization of a molten salt system under multiple atmospheres in a paper published in Solar Energy.[1] An example data set under a pure oxygen atmosphere is shown in Figure 1. The data shows the oxidation of the nitrite component by the oxygen atmosphere, followed by the rapid thermal decomposition of the ternary system at approximately 712°C. Iron current density provides insight into the decomposition mechanism. In this way thermal stability can be characterized as a function of temperature as well as atmosphere. This data was collected using a SETARAM thermal analyzer.

Figure 2. SETARAM Themys thermal analyzer.

Traditionally, this kind of advanced study into corrosive systems using corrosive purge gasses has been challenging with traditional thermal analysis equipment. SETARAM’s high performance thermal analyzers are designed for easy maintenance and resilience to corrosive attack without compromise of performance, with dynamic range from ambient to 2400°C with a single furnace (no cumbersome switching of furnace systems required, with no loss of performance at lower temperatures). SETARAM’s high-precision balances offer unparalleled sensitivity and versatility, with multiple levels of precision and load available for each thermal analyzer. SETARAM’s unique Tricouple DTA technique is available for high sensitivity and high accuracy temperature measurements of phase change phenomena on the Themys thermal analysis platform (Figure 2). The corrosive gas accessory for the Themys enables TGA testing under highly corrosive environments, including flurorine and hydrogen chloride atmospheres. Additionally, testing can be performed under flammable and explosive gas mixtures with the Themys’s hydrogen safety configuration.

For greater ease of use and budget friendliness, the SETARAM Labsys (Figure 3) platform offers the ease of use and versatility of SETARAM’s proven top-loading balances, the high sensitivity 3D DSC Cp rod, and retains the versatility to swap between TGA, DSC, and STA measurement modes offered on the Themys platform. Testing under reducing and oxidizing atmospheres is available.

Figure 3. SETARAM Labsys thermal analyzer.

 SETARAM’s TGA and STA systems can be paired with MS and FTIR systems through the use of heated transfer line accessories enabling evolved gas analysis up to 2400°C. Together, this makes SETARAM systems ideal platforms to unlock the thermal stability of molten salt systems.

[1] R. Olivares. Solar Energy. 2012. 86(9). 2576-83. DOI: 10.1016/j.solener.2012.05.025

Measuring the heat capacity of liquids at high temperatures – applications to molten salts

Figure 1. Liquids vessel for SETARAM C80.

Accurate measurement of specific heat capacity by traditional pan-style DSC is a technically demanding operation: sample size, sample loading, stability of the heat flow sensor mounting in the furnace, contact agents, thermal history of the sample and, at times, temperature stability of the ambient environment when conducting a test can all affect the quality of the data. Much has been written on technical considerations for valid specific heat capacity measurements in the context of solids thermal conductivity measurement. Liquids have traditionally added another layer of complexity to the problem of accurate specific heat capacity measurement.

Liquids generally have non-zero vapor pressures. This means that in a typical Cp test configuration, where the sample is open to a constant flow of a dry purge gas, a liquid is constantly evaporating to achieve the equilibrium vapor pressure. However, because the vapor is constantly being pulled away by the purge gas flow, the equilibrium pressure cannot be released, so the liquid continually evaporates – an illustration of the phenomenon known as Le Chatelier’s Principle. This evaporation is associated with a heat flow signal, which is related to the enthalpy of vaporization and the rate of vaporization of the liquid. Therefore, traditional heat capacity measurement techniques are inappropriate for measuring liquids, as the signal will be affected by the heat of vaporization.

Figure 2. Heat capacity testing of steel through melting.

How, then, do you measure the heat capacity of liquids? There are generally two methods: Firstly, you can machine a vessel with a long, thin tube to allow free expansion of the fluid and thus keep pressure constant but minimize surface area for evaporation and keep the evaporation out of the measurement area of the calorimeter (Figure 1). An example of the data that can be collected in this way is visible in Figure 2 above.

Figure 3. Figure from J. Chem. Thermodynamics 38 (2006) 1260–1268 illustrating the efficacy of encapsulation in measurement of the heat capacity of molten salts.

Another option you can encapsulate the liquid in a sealed vessel of constant or near-constant volume and instead measure the Cv, or heat capacity at constant volume. If the liquid has a low enough vapor pressure to be treated as incompressible, you can make the following assumption:

Cv ~ Cp

Common methods of this strategy include drop calorimetry for high temperature studies, or specialized single-use pressure cells for testing in standard pan-style calorimeters. An example of the type of data that can be collected via this encapsulation method is available in Figure 3, where a SETARAM Multi HTC Calvet-style high temperature drop calorimeter was used to generate test data on a liquid. Because of the relatively low vapor pressure of the liquids, the assumption holds and the Cv measurement can be treated as a Cp measurement.

Caractériser la stabilité des vaccins: le prochain défi de la livraison des vaccins contre la COVID-19

To access this post in English, click here.

La pandémie de COVID-19 a créé un appel à l’action auprès des sociétés pharmaceutiques pour le développement d’un vaccin approprié. Pour le développement de ce vaccin, la compréhension de la biostabilité et de l’énergie cinétique et thermodynamique des solutions diluées du protéines est nécessaire. La stabilité thermique est importante pour la performance des protéines et autres biostructures dans les vaccins. La dénaturation de la structure des protéines peut limiter la fonction du vaccine, et ainsi réduire l’efficacité de tout vaccin développé dans le secteur pharmaceutique.

Figure 1. Illustration des capteurs 3D DSC (la calorimétrie différentielle à balayage) du microcalorimètre SETARAM.

C-Therm Technologies Ltée. a travaille en collaboration avec un leader mondial de la calorimétrie, Setaram, depuis plus d’une décennie. Avec l’efficacité de détection de chaleur du capteur Calvet sur le SETARAM µDSC VII (Figure 1), 93-95% des événements thermodynamiques pouvez être détecté, même s’ils sont petits et précis à des concentrations nanomolaires.  Comparé à l’instrumentation de calorimétrie traditionnelle de style pan, le capteur 3D Calvet offre une sensibilité sensiblement meilleure dans le but d’étudier les formulations de vaccins ou la stabilité thermique des produits finalisés. Avec une urgence accrue dans le développement d’un vaccin pour COVID-19, l’instrumentation µDSC VII et µSC DSC offre une flexibilité pour mesurer les solides, les liquides, les solutions et plus encore. Différentes cellules d’échantillonnage peuvent fournir un mélange ou des séries de mesures isothermes, parfaites pour surveiller les réactions enzymatiques dans les modes de mesure cinétiques ou isothermes. En outre, le µSC DSC offre une capacité supérieure pour l’analyse de plusieurs échantillons en même temps, permettant une comparaison entre différentes formulations de vaccin ou d’autres solutions de biomolécules. Comparées à d’autres instruments DSC de style pan ou capillaire, les offres de calorimétrie SETARAMs offrent une polyvalence sans compromettre la sensibilité, et sont devenues un outil de référence pour étudier la stabilité thermique des formulations de vaccins dans le secteur pharmaceutique.

Figure 2. Mesure des transitions entres les region superhélices et bobine spiralées des plasmides d’ADN.

Les avantages uniques des microcalorimètres SETARAM permettent la résolution des signaux de flux thermique extrêmement faibles, utiles dans l’étude des vaccins et des médicaments biologiques. Dans la Figure 2, un plasmid d’ADN linéaire (solution de Cacodylat à 0,05% dans 5 mM) est chauffé à une vitesse de 0,2 K / min de 40 °C à 110 ° C. Plusieurs endothermes sont visibles, chacun attribuable à un segment d’ADN différent. Les endothermes à basse température correspondent à des séquences dans l’ADN riches en adénine et en thymine (2 liaisons hydrogène), tandis que les endothermes à température plus élevée correspondent à des régions de l’ADN riches en guanine et cytosine.

Figure 3. Dénaturation et agglomération des immunoglobulines IgG.

Dans la Figure 3, un microcalorimètre est utilisé pour détecter la dénaturation et l’agglomération des IgG diluées en solution. Le détecteur de flux thermique à haute sensibilité du microcalorimètre peut facilement détecter le point de dénaturation à une concentration de 1 mg/mL dans une solution tampon PBS. La solution a été chauffée de 25 ° C à 110 ° C à 1 ° C/ min. Une solution tampon PBS sans protéine a été utilisée comme solution de référence. Deux signaux de flux de chaleur superposés ont été détectés: un pic exothermique attribué à la dénaturation et un pic endothermique attribué à l’agrégation. Le logiciel CALISTO permet une résolution simple de chacun des événements thermique.

 C-Therm offre l’accès à son calorimètre Setaram par ses services de laboratoire en soutien aux organisations de recherche développant des vaccins COVID-19 et peut apporter une expertise considérable dans les laboratoires de pourvoirie avec les outils de haute sensibilité pour accélérer le développement de vaccins. Pour plus d’informations, veuillez envoyer un courriel à info@thermalanalysislabs.com ou appelez-nous au 1 (506) 457-0498.

Outil haut sensibilité pour caractériser la stabilité des vaccins

La pandémie de la COVID-19 a créé un appel de l’action mondial au des sociétés pharmaceutiques pour la développement d’un vaccin. Dans le développement de ce vaccin, la compréhension de la biostabilité et de l’énergie cinétique et thermodynamique du les solutions diluées du protéines est nécessaire. La stabilité thermique est importante pour la performance des protéines et les autres biostructures dans les vaccins développés. La dénaturation de la structure des protéines peut limiter la fonction du vaccine, et ainsi réduire l’efficacité de tout vaccin développé dans le secteur pharmaceutique.

Micro DSC 7

C-Therm Technologies Ltée. a travaille en étroite collaboration avec le leader de l’industrie mondial de la calorimétrie, Setaram, depuis plus d’une décennie. Avec l’efficacité de détection de chaleur du capteur Calvet sur le SETARAM µDSC VII, 93-95% des événements thermodynamiques pouvez être détecté, même s’ils sont petits et précis à des concentrations nanomolaires. Comparé à l’instrumentation de calorimétrie au style pan traditionnelle, le capteur 3D Calvet offre une sensibilité sensiblement meilleure pour étudier les formulations de vaccins ou la stabilité thermique des produits finalisés. Avec une urgence accrue dans le développement d’un vaccin pour COVID-19, les instruments µDSC VII et µSC DSC (calorimètre à analyse différentielle) offre une flexibilité pour mesurer les solides, les liquides, les solutions et plus encore. Avec des cellules d’échantillonnage different différente peuvent fournir un mélange ou des séries de mesures isothermes standard, parfaites pour surveiller les réactions enzymatiques dans les modes de mesure cinétiques ou isothermes. De plus, le µSC DSC offre une capacité supérieure pour l’analyse simultanée de plusieurs échantillons, permettant une comparaison entre différentes formulations de vaccin ou d’autres solutions de biomolécules. Comparées à d’autres instruments DSC de style pan ou capillaire, les offres calorimétrique de SETARAM offrent une plateforme polyvalence sans compromettre du sensibilité et sont devenues un outil de référence pour étudier la stabilité thermique des formulations de vaccins dans le secteur pharmaceutique.

Internal Cell of Micro DSC 7

C-Therm offre l’accès à ses calorimètres Setaram par ses services de laboratoire pour soutenir les organisations de recherche développant des vaccins COVID-19 et peut apporter une expertise considérable dans les laboratoires de pourvoirie avec les outils de haute sensibilité pour accélérer le développement de vaccins.

Characterizing Vaccine Stability: The Next Challenge in Delivering COVID-19 Vaccines

Pour consulter cet article en français, veuillez cliquer ici.

The COVID-19 pandemic has created a global call to action to pharmaceutical companies for the development of a suitable vaccine.  In the development of such vaccine(s), understanding the biostability and kinetics/thermodynamics of very small and dilute protein solutions is necessary. Thermal stability is important for the performance of proteins and other biostructures within vaccines. Denaturing of protein structure can limit vaccine function and thus reduce effectiveness of any developed vaccine within the pharmaceutical sector. 

Micro DSC 7

C-Therm Technologies Ltd. has worked closely with the world-leader in calorimetry, Setaram Instrumentation, for over a decade.  With the SETARAM µDSC VII (See Figure 1) equipped with the unique Calvet sensor’s 93-95% heat detection efficiency, small and precise thermodynamic events can be observed at nanomolar concentrations. Compared to traditional pan-style calorimetry instrumentation, the 3D Calvet sensor offers substantially better sensitivity for the purpose of studying vaccine formulations, or thermal stability of finalized products.  With increased urgency in the development of a vaccine for COVID-19, the µDSC VII and µSC DSC instrumentation offer flexibility to measure solids, liquids, solutions and more. Different sample cells can provide mixing, or standard isothermal measurement runs, perfect for monitoring enzymatic reactions in kinetic or isothermal measurement modes. Additionally, the µSC DSC offers higher capacity for running multiple samples at the same time, allowing for comparison between different formulations for vaccine or other biomolecule solutions. Compared to other pan style or capillary style DSC instruments, SETARAMs calorimetry offerings provide versatility without compromising sensitivity and have become a benchmark tool for studying thermal stability of vaccine formulations within the pharmaceutical sector.  

The unique advantages of the SETARAM microcalorimeters enable resolution of extremely small heat flow signatures, useful in the study of vaccines and biological drugs. In Figure 2, a linear plasmid DNA (0.05 % in5 mM Cacodylat solution) is heated at a rate of 0.2 K/min from 40°C to 110°C. Multiple endotherms are visible on the plot, each attributable to a different DNA segment.1 Lower temperature endotherms correspond sequences in the DNA rich with adenine and thymine (2 hydrogen bonds) whereas the higher temperature endotherms correspond to regions in the DNA high in guanine and cytosine.  

In Figure 3, a SETARAM microcalorimeter is used to detect denaturation and agglomeration of dilute IgG in solution. The microcalorimeter’s high sensitivity heat flow detector can easily detect the denaturation peak at a concentration of 1 mg/mL in a PBS buffer solution. The solution was heated from 25°C to 110°C at 1°C/min. A PBS buffer solution with no protein was used as the reference solution. Two superimposed heat flow signals were detected: an exothermic peak attributed to denaturation and an endothermic peak attributed to aggregation. The CALISTO software enables straightforward resolution of each peak.  

Internal Cell of Micro DSC 7

C-Therm is offering access to its Setaram calorimeter via its lab services in support of research organizations developing COVID-19 vaccines and can lend considerable expertise in outfitting labs with the high sensitivity tools for accelerating the development of vaccines. For more information, please email info@thermalanalysislabs.com or call us at 1 (506) 457-0498. 

Exploring the thermal properties of materials using thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and differential thermal analysis (DTA).

Understanding the fundamental thermal properties of a given material is an important aspect of material design and study. Tools to explore a material’s thermal properties include thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and differential thermal analysis (DTA). TGA measures weight change of a sample over a temperature range, DSC measures heat flow of a sample over a temperature range, and DTA measures heat differences between a reference sample and a sample of interest over a temperature range. From these individual techniques, we can determine heat capacity, glass transition points, crystallinity data, and thermal stability of a material.

All three methods are available through TAL with Setaram’s Labsys Evo system. 


Figure 1: View of  SETARAM Labsys Evo 1600 TGA open, showing the balance mechanism.

Thermogravimetric Analysis (TGA)

TGA is a powerful and robust technique to explore the thermal stability of a material. By accurately monitoring the weight of a sample while heating at a constant rate, we can measure changes in a sample’s weight and attribute this to a specific material response to a thermal stress (Figure 1). This is perfect for exploring, in detail, decomposition temperatures and ensuring a material performs adequately in a given temperature range.

During a test, a carrier gas flows over the sample and the weighing mechanism.  This carrier gas serves two purposes: protecting the internals from corrosion/oxidation above 500 °C, and to interact with the sample through gas-solid or gas-liquid reactions. By providing an inert atmosphere, we can test the thermal stability of a material. Reducing environments can explore gas-solid phase reduction reactions or protect specific samples from being oxidized. By the nature of the sensitivity of the TGA balance, we also can observe the absorption of gas onto a porous material at various temperatures. This is an ideal technique for exploring metal organic frameworks, or catalytic porous materials. Owing to the sensitivity of the balance on our SETARAM Labsys Evo instrument, we have ideal sensitivity for running thermokinetic experiments. This experiment has applications towards thermal stability of a given material at elevated temperatures.

The SETARAM Labsys offers the ability to perform TGA analysis up to 1600 °C and additionally under a variety of gas mixtures due to our gas-mixing option.

Differential Scanning Calorimetry (DSC)

DSC is a flexible technique to explore thermal transitions within a given sample. By heating a sample and measuring the heat flow as compared to a reference standard, we can access thermoanalytical information on a given material. DSC curves are generated by plotting heat flow (mW) vs sample temperature (°C), and an example plot is found in Figure 2, and demonstrates the melting and fusion of Indium Corp. Indalloy 80Au/20Sn solder. In this case, we observe a phase change (solid-liquid followed by liquid-solid); however, we can also observe other thermal transitions within a material, such as evaporation, thermal transitions between polymorphs, and determination of key thermal constants. One of these key thermal constants is heat capacity (Cp), which an be difficult to acquire due to the demanding experiment required to gain access to this information. Heat capacity requires precise and very specific sensitivity of the DSC sensor, as it is a very small and difficult thermal effect to capture effectively. Owing to our 3D Calvet type sensor on our µDSC 7, we have the capability to measure such small thermal effects (0.02 µW) requiring the upmost sensitivity and precision from 0 – 120 °C. For higher temperatures, our SETARAM Labsys Evo instrument has a specifically designed 3D-psuedo-Calvet sensor, which allows TAL to perform Cp testing with better than 2% accuracy from ambient temperatures to 1600 °C. This very sensitive and difficult to determine thermal effects also include the glass transition point (Tg), water state in materials and other thermodynamic and thermokinetic effects.


Figure 2: (main) A thermogram demonstrating the melting point of a common solder at 280.782 °C as compared to its literature point of 280 °C. The melting point is determined using the ISO 11357-3 standard definition. (inset): A picture of the internals of our DSC 7, showing a sample and its reference during a DSC experiment.

Differential Thermal Analysis (DTA)

DTA is a similar technique to DSC, however instead of measuring the heat flow between the furnace temperature and the sample, you measure the temperature difference between a sample and a standard reference using thermocouples. This is particularly useful for phase-change materials and the study of organic and polymeric materials using analytical precision. Owing to the more sensitive detector within typical DTA sensors, DTA testing is particularly useful for running thermokinetic experiments due to the lower thermal inertial barrier. TAL offers DTA testing from ambient to 1200 °C, allowing us to explore thermal effects at elevated temperature, capabilities which we have newly acquired.


Figure 3: A thermogram showing two experimental curves of the decomposition of CuSO4•5H2O, a TGA standard. TGA (blue curve) thermogram shows the loss of 5 water (36 wt%). Each loss of water corresponds to an endotherm signal (DSC, orange), which would be expected for the loss of water from CuSO4•5H2O.

While each of these techniques may be used to probe into a single physical characteristic of a material, the real power we provide is simultaneous thermal analysis techniques for niche applications on a single sample. With TAL’s Labsys Evo 1600 and DSC 131, we offer capabilities to include high temperature ranges with mixtures of gases. For example, TAL offers TGA, DSC and DTA experiments from ambient temperatures up to 1600 °C. Figure 3 shows a TGA-DSC decomposition experiment captured on our Setaram Labsys Evo apparatus, where CuSO4•5H2O decomposition can be measured by TGA (water, SO2 and O2) and DSC. In addition to these coupled thermal experiments, we offer the capacity to provide gas mixtures for high precision control over the exact atmospheric exposure during thermal analysis runs. TAL also offers the capacity to run samples under vacuum (10-3 Bar) using our Labsys Evo system, which is useful for isolating gas-sample interactions. TAL also offers pressurized DSC experimentation, allowing for the study of various samples under 200 psi. This can provide insight into thermal transitions under pressure, such as those in the oil and fuel industry or in the case of high-pressure lubricants. Additionally, we have access to specialized high pressure self-sealed cells, allowing for the study of close-system up to 500 bar and 500 °C. Below is a summary of our newest expanded capabilities (Table 1):

Table 1: Newly acquired techniques available for TAL. Each technique is followed by the constraints of our analysis. In the case of gases, TAL can work with the client to explore other gas opportunities.


*Liquid vapour pressure, not controlled.

With significant investment into these powerful thermal analysis instruments, TAL offers broad capacity to serve our clients with some of the most relevant thermal analysis tools. With our expertise in thermal analysis, we offer solutions to research and materials questions and are here to provide our customers with the best support in their thermal analysis needs. Feel free to chat with us about our contract testing services and we will find a solution that best suits your needs.

In addition to these thermal analysis techniques, TAL offers a wide breadth of techniques for testing thermal conductivity and thermal diffusivity, via multiple Transient and Steady State technique.  The newest thermal conductivity equipment being C-Therm’s TRIDENT platform.

Contact us today at info@thermalanlysislabs.com or call +1 (506) 457-1515